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1. Introduction

In recent years, there has been a great deal of interest in shock propa-

gation in non-uniform ducts. Chester [11 determined the disturbance produced

behind a shock of arbitrary strength propagating through a tube of arbitrarily

varying cross-section by linearizing the problem on the basis of small area

variations and found that the pressure perturbation behind the shock was given

by

- K(P2 - PI)[AA]/A ,

where P2 - P 1 was the initial pressure discontinuity across the shock, [AA]

the net change in area and the parameter K a monotonically decreasing function

of the shock strength. Chester started with the fuli three-dimensional equations

of motion and then carried out an averaging process by restricting the final

consideration to the average pressure. However, such a restriction at the end

means that the same results must be obtainable by starting with a one-dimensional

analysis. This important fact was first realized by Paul Germain, and Chester's

results obtained by a one-dimensional analysis by Gundersen [6], extracts

from which appear in [7], the analysis being based on techniques presented by

* Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No. DJ,-Il-0ZZ-ORD-2059.
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Germain and Gundersen [5]. Surprisingly, the one-dimensional approach leads

to an improvement, namely, the term [AA]/A in Chester's work is replaced

by A/A where A is the perturbed area distribution. This shows the relation

between the area change and shock strength at any point. This fact was

observed by Chisnell [Z],who obtained it in a different manner, essentially

assuming Chester's steady state solution,valid for large time only, could be

utilized, and used to apply an integrated form of Chester's solution to discuss

converging cylindrical and spherical shocks with great accuracy.

Lately, many others have worked on similar or related problems, e.g.,

Rosciszewewski [8] and Whitham [9] who also rederived Chester's results.

In the present paper, the techniques presented in [7] are generalized to

determine the perturbation produced when an initially plane magnetohydrodynamic

shock wave encounters an area variation, the problem being linearized on the

basis of small area variations. In order to ensure that all changes in the

behavior of the shock are caused by the non-uniform area, it is assumed that

the area variations are confined to the region x > 0 while to the left of the

section x = 0 (say), the tube is of constant area, and the initially plane

shock propagates through this portion with constant speed. The fluid in front

of the shock is assumed at rest.

When the shock meets the area variation, it is perturbed, the shock strength

altered, and the subsequent flow is non-isentropic.

There are two distinct contributions to the disturbance, namely, a per-

manent perturbation caused directly by the area change and a transient

disturbance, due to reflection from the shock of the permanent perturbaticn,
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which propagates with velocity w = [c2 + b ]1/2, where c is the local speed

of sound and b the Alfven speed, with respect to the flow behind the shock.

In the immediate vicinity of the shock, the ultimate effect is an altered

shock strength and concomitant pressure change behind the shock. When the

flow behind the shock is < w, there is a disturbance convected to the left with

velocity cw relative to the fluid while for flow > w, a similar disturbance is

generated which propagates to the right with velocity w relative to the fluid.

This latter must be added to the steady flow solution. Expressions for these

various contributions are obtained.

Specifically, it is found that the pressure perturbation immediately behind

the incident shock is given by:

2 = - K2(0-,m 1 )(P2 - P )A /A1 2

where perturbations are denoted by a bar, P2 - P1 is the original pressure

discontinuity across the shock, A2 the cross-sectional area, a the shock

strength defined as a density ratio and m= b /C 1  a measure of the applied

field.

For all mi1 , lim = 0.5 and lim K? = 0.45085 (the present analysis
¢-• 1 + ¢-4-

is limited to a monatomic gas so that 1 < a- < 4]. But these are exactly the

limits for the ordinary gas dynamic case which corresponds to mI = 0 . Thus,

the result: for very weak or very strong shocks [in an asymptotic sense], the

results are independent of the magnetic field and agree with the usual gas

dynamic results.

In magnetohydrodynamics, strong shocks occur for a- close to 4 or for
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a very strong applied field for any o > 1, i.e. , m1 is then large.

For m1 = 0, K2 is a monotonically decreasing function of the shock

strength and agrees exactly with the corresponding parameter in the afore-

mentioned publications.

For any m1 * 0, the monotoncity is lost but each curve is concave upward

with curves for greater mI lying below those for lesser ml, and all curves pass

through the points (o, K2 ) = (1 0.5) and (4, 0. 45085).

Further, for fixed incident shock strength, K2 is a monotonically

decreasing function of mil, i.e., in a diverging (converging) channel, the

pressure decrement (increment) is decreased (decreased) by increasing the applied

field.

If the area variations are confined to a transition section of finite extent

joining two portions of constant area, the total effect of the passage through

the transition section is a change in shock strength with the shock eventually

again becoming uniform.

Qualitatively, the motion of the shock is independent of whether the main

flow behind the shock is < w or > w.

Since the analysis, which is limited to a monatomic gas, includes the

usual gas-dynamic results as a special case, there is a check on the theory

presented herein.
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2. General Theory

The quasi-one-dimensional non-steady flow of an ideal, inviscid, per-

fectly conducting monatomic compressible fluid, subjected to a transverse

magnetic field, i. e., the induction B = (0, 0, B), is governed by the system of

equations:

Ct + UCx + cu/3 + ucA/3A = 0 (I)

3cc+ u + uu + bBx/B - 9c2 x/lOcv 0 (2)3Cx t x

Bt +uB +BU = 0 (3)

S+ uinx = 0 (4)

where u, c, Tb
2 = B /Bp , p , t and A are, respectively, the particle velocity,

local speed of sound, specific entropy, square of the Alfven speed, density,

permedbility and cross-sectional area. Partial derivatives are denoted by

subscripts and all dependent variables are functions of x and t alone save

A which is considered time independent. The characteristics of this system

are:

dx/dt = u,u,u + , u-W

where w = [c + b which corresponds to the limiting case of a fast wave.

For an arbitrary isentropic constant area flow, the base flow in the

neighborhood of which perturbations will be considered, the basic system of

equations (1), (2) and (3) may be written in the following characteristic form

[31:
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- (u + )t =0 (5)

x -(u.- )t =0 (6)

xt - ut = 0 (7)

(W -c )B P/B+ ui + 3cc =0 (8)

-c )B /B-wu + 3cc =0 (9)

B /B - 3cA/c = 0 (10)

with characteristic parameters (a, PY, ).

From equation (10), it is clear that the quantity B/c3 is constant along

each particle path, which is a well-known consequence of the assumption of

infinite electrical conductivity, i.e., the magnetic field is "frozen" into the

fluid. For a cons+ant state or a simple wave flow, B/c 3 is constant through-

out the flow, and equations (8) and (9) may be written as:

u + 3cP/c = 0 (11)

-u +3wc/c=0 (12)a

3 3
Since B =rIc , p = r2 c with constants rI and r 2 ,

= r1 c /ýr- kc (say)

so that

W2 c2(1 + kc)

and (11) and (12) may be integrated explicitly to yield:
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u/2 + (I + kc) 3/2/k = u/Z + (w/c)3/kki (13)

- u/2 + (I + kc) 3//k = - u/Z + (w/c) 3/k = p (14)

where (C., ýi) may be considered as generalizations of the usual Riemann in-

variants.

It is convenient to make a transformation of dependent variables so that

equations (13) and (14) become linear relations in order to bring the present

results into close analogy with ordinary gas-dynamics. This is effected by the

substitution w = (ca/c)3 so that the basic system (1)-(4) becomes:

wt/k + uwx/k + WU x/Z + UcAý/ZA = 0 (15)

ut/Z + wx/k + uux/Z - 9xC2/r0C v 0 (16)

7t + uIx = 0 (17)

where it has been noted that

Bx/B = 2wx/kB

and equation (3) omitted so that the basic system (l)-(4) is effectively reduced

to three equations, adding and substracting (15) and (16) gives:

ut/z + wt/k + (u+ )[wxk + ux/Z + u zA -9xc2 /20cv = 0 (18)

u/2 + wt/k + (u -w)[w/k -ux/2]+ uuAA,,/2A + 9 10c /2cv = 0 (19)

A formal linearization of the equations (17), (18) and (19) in the neigh-

borhood of a known isentropic solution, denoted by the subscript zero, leads
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to the following system of linear equations for the terms of first order, denoted

by the subscript one:

[w 1/k + u 1/ 2 ]t + (u1 + W1)[w 0 /k + u 0/2]. + (u0 + W 0 )[wl/k + u/Z]x

(20)

+ u 0 W0 A 1x/2A 0 - 9 co 2 11ix/Z0cv = 0

[w/k - u1/Z]t + (u1 - W 1 )[w 0 /k - u0 /2]x + (u0 - W 0 )[wl/k - uj/Z]x

+ u0 W0AI/2A0 + 9c 0.2lx/20cv = 0

lit + U0 ?,x = 0 (22)

According to (22), qI remains constant along the particle paths of the

given flow, i.e., along dx/dt = u 0 . Since p0 (dx - u 0 dt) is the exact

differential of a function ýO which when equated to a constant, defines the

particle paths, the solution of (22) may be written as:

'11 = Q(LPo0 (23)

with 0 an arbitrary function. It is convenient to define a new function

T 0 (x, t) by:

9 9c 0  O lOc vT0 (24)9c 0
1 1lx v=
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Introducing the functions

R = u 1/2 +WI/k , S =-U /2 + wl/k

and noting that

u0 /Z + w0/k= , - u 0/2 + w0/k ,

the characteristic parameters of the basic flow, equations (20) and (21)

may be written as:

R t+ (uo +w 0 )Rx + [3R- S - (R + S)/3w0 2/3] x/Z

(25)
T 0 /Z - u0 W0Alx/ -0

St + (u0 - W0o)Sx + [R - 3S + (R + S)/3wo /3]Px/Z

(26)

= - T0/Z - u 0 W0AIx/2A 0

Equations (25) and (26) have proved useful in discussing perturbations

of simple waves. For the present problem, the base flow is a constant state

so that a and P are constants, and the general solution in terms of three

arbitrary functions of one argument is:

To = 2E' [x - u 0t] (27)

R M F~x - (u 0 + w 0-)t] + E[x - uu0t]/t0 - 0 0A/ZA (u0 + W ) (28)

S = G[x - (u 0 - W 0 )t] + E[x - u0 t]/c0 0 - u0 c 0AI/ZA0 (u0 - W 0 ) (29)

Thus, there are four distinct contributions to the perturbation, viz.,

a disturbance due directly to the area variations, one due to the entropy

variations, which travels along the particle paths and is measured by E,
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a perturbation propagating with velocity co , the true speed of sound, with

respect to the fluid along the family of characteristics x - (u0 + W0 )t = constant

and measured by F and a perturbation propagating with velocity W 0 with

respect to the fluid along the family of characteristics x - (u 0 - 00)t z constant

and measured by G.

3. Solution in the vicinity of the incident shock

Jump conditions across normal magnetohydrodynamic shocks have been

considered by several authors, e.g., Friedrichs [4]. Let U be the shock

velocity, v = U - u and the subscripts one and two designate flow quantities

in the regions in front of and behind the shock. Then the analogs of the

Rankine-Hugoniot relations are:

ply1 = P2 v 2

B~1 =2 v B2 / B/2

PlV 1 + P1 + B1
2 11 = P2v 2 + P2 +

YP1/(Y - lOP1 + v 1
2 /2 + B1

2/I1/Pi = YP2 /(y - l)p 2 + v.2/2 + B2
2/p 2 ti

For gas-dynamics shocks, knowledge of the flow in front of and one para-

meter behind the shock suffices to give a complete solution. In magnetohydro-

dynamics, all quantities behind the shock may be expressed in terms of those

In front and two parameters, viz., the shock strength and one which gives a

measure of the applied field.

Let m = b/c, n = u/c, T = p2/pl T = P/P1 M = v/c and
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2 2 2 2
q = w /c =+ m+ . Then the following relations hold, where n] is

assumed zero:

v -/V2  / = = b 2 /b-1  - (30)

T [4o - 1 -5m12( - a-)3 /6]/(4 - ) (31)

M 2 =[6 + m12 a-(5 + ) ]/2(4 - -) (32)

n 2 = (1 - -1 )Ml(T-/T)I/2

= (T 1)1[3 + mr1
2 (5 + cr)/ZV[4a- - 1 5m 1

2 (1 - -))3/61}1/2

c22/C2 T/0 (34)

2 2
m = /m 0 -/T (35)

which express the flow parameteis behind the shock in terms of a- and min.

The effect of an area variation on the motion of an initially uniform shock

propagating with constant speed into a fluid at rest will now be determined

by the use of the general solution for the non-isentropic perturbation of a

constant state, equations (27)-(29). The method of generation of the shock

is left open save that whatever that may be, the mechanism is sufficiently

far removed so that no reflections come back to interfere with the basic

interaction considered herein.

From the formulation of the problem, there is no mechanism downstream

of the shock which could give rise to the term F[x - (u2 - W 2)t] in (Z8). The
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pressure perturbation behind the shock will be determined by setting F = 0.

This gives:

U/2 2 Z/ - 9c-12 A u ca A/2A2 (u2 + w) (37)

where perturbations of a quantity are denioted by a bar. Since

w 2 /k 3w 2 C 2 /2c 2

and

- 9 e/Z0cv = 3P2/iOP2 - 37c 2/2c,

the latter from the equation of state, equation (37) may be written as:

u 7-2m2/2q 2 +3 2 P2 /10q 2 P2 = 2 uq 2A 2 /2 (n2 + q2)

or

2 ~2u/c 2 + 3 [5m2 + 2]P 2/10q 2 P2 - 3m 2 P2 /2q~p2 = - n~q A2/(n 2 + q2 )A2 (38)

From the jump conditions, equations (30)-(36)y

- [90a- + 5m 2o-(1 1 -24o- + 15 ar- 2 o _ ) 2(
T _ _ 1
T (4 6 o-[(4 a- - 1) 5 m 1 

2 (1 3 T)~

u 2  [24 + 120-+ M1 
2 (20 +10a- +7a- 2  

T 2

2(4 -o)o-)6m (5 +-)

so that (38) gives:

P2/2 =-K,[o,m 1 ]A2 /A2 *(39)
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where:

_r 2 2- [ 2201u7a 2_ -3n 2 q2 90o-+5m 1o-(11-24o-+ 2-2Sc 20rn 24+12or+m1 (20+1o+7 -a-)

K Ill = .321
n 2+q 2  6(4o--1)-5m 1 (1-C-) z (a-- 1) [6+m 1 (5+a-)]

3(5m 2+?) [90a-+5m~ 1 a(11-24oy+15cr -2cr 3) m3m (4-00)

10q 2  [ 6(40.-l)-5ml2(1-0) 3 2q 2

or

P2?= - K2 (0'1 m)(P2 - P )A /A (40)

where
5m 2 (1-0-) 3 _ 6(4o--1)

2 30(1-a-) + 5 (--

Strong shocks can occur in magnetohydrodynamics in two ways, viz.,

for (r close to 4 or for a very strong applied field for any cr>1, i.e., m 1

is then large.

For all ml , lim K2 = 0. 5 and lim K = 0. 45085, but these are pre-
-*I+ o--..4-

cisely the limits for the ordinary gas dynamic case which corresponds to ml = 0.

Thus, for very strong or very weak shocks [in an asymptotic sense], the results

are independent of the magnetic field dnd agree with the usual gas dynamic

results.

For mI = 0, K2 decreases monotonically with (r and agrees exactly

with the corresponding parameter in the gas dynamic case [2].

For any m1 0 0, there no longer is a monotonic variation with a-, but
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the curves are all concave upward with those for greater m 1 lying beneath

those for lesser m1 . All the curves issue from the point ( o-,K 2 ) (1,0.5)

and terminate at the point (4, 0. 45085).

For fixed incident shock strength a-, K2 decreases monotonically with

increasing m1 , so that in a diverging (converging) channel, the pressure

decremer~t (increment) is decreased (decreased) by increasing the applied field.

Qualitatively, the motion of the shock is independent of whether the main

flow behind the shock is < w or > w.

Graphs of K2 are given in Figure 1.

4. The Reflected Disturbance

To complete the solution, the arbitrary function G of equation (29) must

be determined. This is done most readily by noting that the system (27)-(29)

may be written as:

u 2+ 3-c m /2q2 + 3c P /I Oq P2 = - uqA /2A (n2 4-q) - u/2 + 3-cm 2m /2q 2

+ 3c 2 P 2 /10q 2 P2 = - u 2 q 2 A2 /2A 2 (n 2 - q 2) + G[x - (u 2 - 2 )t]

Thus, on addition:

2 2 2 3{15M 2 +6 3m 2(4- T) [6(4o--1)-5m 1(1-0r) P

n 2q2 2- G [x - (u2 W •)t]/czn2 A22
2 2
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Evaluating this on the shock, x = Ut, and replacing P2/P 2 by its

value from (39) gives:

]z = K3 A[6X]/AZ

where

= x - (u2 - z)t

6 =(MZ + nZ)/(M + q2 )

n 2 q2  3K1  5m 2 +2 m,(4-or) 5m1Z (1-) - 6(4o"-l)
K 2 -2 1 5 + 2

3 n2 -q 2  Zq2 90+5m 1 (1l-24Tr+l150-2_2o0-)

Thus:

pz/(P2 -P 1 ) = - -xAZ[6)l/A2 (41)

where

23 1
n2 q( 5m5l(1-G)3-6(4 -)--l)

35m +2 -+m~(-- 5m(-=2-64r
Zq 5 + 5 T90+5m 1 

2 (1-- -24(r-+15o-32 -20-3 )1

z= ti + K2

The parameter 6 is a monotonic increasing function of the shock strength

and varies between the limits

0.5 < 6 < 1. 2361

for all mi. Graphs are presented in Figure 2.
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It might be noted that Chester's graph of the corresponding function is

incorrect. He gives it as a monotonic decreasing function and the value for

a very weak shock (a- = 1) is the reciprocal of the true value.

When the flow behind the shock is < w. a disturbance will be reflected

to the left downstream of the shock, and, from (41), the pressure perturbation

will ultimately be given by:

P2 2 - 2 2 [5 X]/A 2

since A2 = 0 for x < .

For flow > w behind the incident shock, the reflected disturbance will

travel to the right and the pressure perturbation is given by (41).

Graphs of the parameter 2 are presented in Figure 3. The parameter

is singular for n 2 = q.. This difficulty may be eliminated by a more careful

consideration of the basic perturbation equations by retention of appropriate

nonlinear terms. However, since the main purpose of this paper is to consider

the pressure perturbation in the immediate neighborhood of the incident shock,

such are not employed.

5. Concluding Remarks

In conclusion, let it be noted that a theory has been developed rather

parallel to that of Chisnell [2] for the magnetohydrodynamic case, and this

will be reported when the numerical computations have been completed.

For the present, suffice it to say that this theory gives that the strength

of converging cylindrical and spherical magnetohydrodynamic shocks near the
-K 2  a -2KZoo

point of collapse is proportional to D and D , respectively,



#287 -17-

inde endent of the a lied field where Kz0 = 0.45085 and D is the

distance from the point of collapse.

The author wishes to thank Mr. ]. Al-Abdulla for carrying out the

computations employed herein.
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Figure 1

A graph of the parameter
K vs. the shock strength.
The uppermost curve corres-
ponds to m-1=0, i.e., the
gas dynamic case while the
successively lower curves
correspond, respectively to
m=, 1.5, 3 and 6.
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1. 3

1.2

1. 1

1.0

0.9
Figure 2

A graph of the parameter
0.8 86 vs. the shock strength.

0.8 Since there is little
variation of 6 with
only the cases m = 0
(upper curve) anc" mI = 6

0.7 (lower cvrve) are given.

0.6

0.5 I I I I

1 1.5 2.0 2. 5 3.0 3.5 4.0
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30 f

92 FFigure 3

A graph of the parameter

t 2 vs. o. The two
monotonic branches
correspond to m1 = 0
while the other two

20 correspond to m= 6.
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